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General-purpose navigation with hierarchical VLAs. Diverse heterogeneous training data is used to train a high-level VLM planner (left),

which is modulated by a per-embodiment, low-level affordance model trained entirely in simulation (center). This yields robust, multi-embodied, open-world

navigation controllers (right).

Abstract— A fundamental challenge in robot navigation lies
in learning policies that generalize across diverse environments
while conforming to the unique physical constraints and ca-
pabilities of a specific embodiment (e.g., quadrupeds can walk
up stairs, but rovers cannot). We propose VAMOS, a hierarchi-
cal VLA that decouples semantic planning from embodiment
grounding: a generalist planner learns from diverse, open-
world data, while a specialist affordance model learns the
robot’s physical constraints and capabilities in safe, low-cost
simulation. We enabled this separation by carefully designing
an interface that lets a high-level planner propose candidate
trajectories directly in image space that the affordance model
then evaluates and re-ranks. Our real-world experiments show
that VAMOS achieves higher success rates in both indoor
and complex outdoor navigation than state-of-the-art model-
based and end-to-end learning methods. We also show that our
hierarchical design enables cross-embodied navigation across
legged and wheeled robots and is easily steerable using natural
language. Real-world ablations confirm that the specialist model
is key to embodiment grounding, enabling a single high-level
planner to be deployed across physically distinct wheeled and
legged robots. Finally, this model significantly enhances single-
robot reliability, achieving 3x higher success rates by rejecting
physically infeasible plans.

I. INTRODUCTION

A core problem in robotics is determining how robots
can navigate to a goal location while traversing non-trivial

terrain and obstacles. The promise of general-purpose robot
navigation— i.e., performing well across diverse environ-
ments and different embodiments as well as being easy to
control—has motivated a shift from hand-designed modular
stacks to learning-based approaches that leverage large-scale
data. Recent advances in robotic foundation models have
shown that performance scales with the amount of diverse
data provided [1], [2], [3], [4]. However, as datasets scale, so
does their heterogeneity. This becomes a critical challenge
when a downstream robot is physically incapable of achiev-
ing the entirety of behaviors recorded in a pooled, multi-
robot dataset. For instance, data from a quadruped navigating
stairs is of limited use to a wheeled robot. This creates
a bottleneck that prevents us from naively combining all
available data and achieving reliable navigation performance.
In this work, we tackle the problem of effectively leveraging
large-scale, combined datasets of heterogeneous locomotion
capabilities for learning general-purpose cross-embodiment
and steerable navigation policies.

To this end, we propose VAMOS, a hierarchical vision-
language-action (VLA) model. Our key insight is that naviga-
tion can be decomposed: high-level heuristics (e.g., reaching
a goal, avoiding large obstacles) are generalizable across em-
bodiments, while low-level traversability is strictly dependent



on the robot’s physical capabilities. VAMOS operationalizes
this insight with two main components, i.e., a high-capacity
vision-language model (VLM) that acts as a generalist high-
level planner, and a lightweight, per-embodiment affordance
model that evaluates the feasibility of the planner’s proposed
actions. We train the VLM planner on diverse, real-world
datasets to instill broad semantic understanding, and we
train each embodiment’s affordance model in simulation for
efficiency and safety. The interface between these models
is a predicted 2D path. This path provides a structured yet
flexible representation that enables our planner to leverage
heterogeneous data while allowing the affordance model to
modulate plans based on embodiment-specific constraints.
Through extensive real-world experiments, we demon-
strate that our hierarchical approach, VAMOS, yields a new
state-of-the-art in general-purpose robot navigation. We show
for the first time that a structured VLA can outperform
both heavily tuned modular stacks and monolithic foundation
models on challenging indoor and outdoor courses. The
key to this superior performance is the hierarchical design
choices that successfully disentangle general planning from
specific physical affordances to enable cross-embodiment
transfer: we achieve high performance on both wheeled and
legged robots by reusing the same high-level planner and
swapping only a lightweight, specialized affordance model.
Our use of a VLM also permits intuitive, natural language
steerability at test time. Further, our ablations validate our
core design choices, confirming that training with heteroge-
neous data provides significant positive transfer and that our
affordance model is crucial for robust navigation.

II. RELATED WORK

Our work builds upon three key areas of research: classical
modular navigation, end-to-end learning for navigation, and
hierarchical vision-language models.

Classical Modular Navigation. Navigation has tradition-
ally been approached using modular systems with distinct
components, e.g., state-estimation, perception, planning, and
control [5], [6]. These methods have become the estab-
lished standard in complex real-world systems due to their
reliability and interpretability [7], [8]. To improve their
generalization, recent efforts have incorporated learning-
based components, e.g., in perception [9], [10], traversability
estimation [11], [12], [13], [14], or planning [15].

However, modularity introduces significant limitations.
First, these systems are typically heavily tuned for a spe-
cific robot embodiment and a bounded set of operating
scenarios, making them brittle when deployed in new envi-
ronments. Second, the intermediate representations, such as
2.5D costmaps, can abstract away valuable information and
create performance bottlenecks between modules. Most im-
portantly for our work, these systems lack cross-embodiment
generalizability; transferring them to a new robot often
requires re-training learned components and extensive re-
tuning of the entire stack [11], [16]. Our work aims to
achieve the robustness of these systems while overcoming

their reliance on hand-tuning and their inability to generalize
across embodiments.

End-to-End Learned Navigation and Foundation Mod-
els. To address the limitations of modular stacks, a domi-
nant paradigm in recent years has been end-to-end learned
navigation. This approach seeks to learn a direct mapping
from sensor inputs to control actions, shifting the burden
from manual system design to large-scale data provision. The
success of foundation models in other domains has inspired
similar efforts in robotics [1], [2], [3], [4], [17], which
have demonstrated that policy performance scales effectively
with the size and diversity of the training dataset. However,
without any additional structure, these methods can be brittle
during real-world deployment, e.g., they often struggle to
train across widely heterogeneous datasets due to individual
dataset variations in the action space.

Hierarchical Architectures and Vision-Language Mod-
els. To achieve a better balance, our work builds upon
the paradigm of hierarchical models, which separate high-
level planning from low-level control, the latter of which is
often treated as an open-loop black box. This structure is
well-established in both manipulation [18], [19] and navi-
gation [20], [4], [3]. However, the choice of representation
and the division of responsibility between the modules are
critical. As our experiments later demonstrate, many prior
hierarchical models underperform even traditional modu-
lar baselines in complex settings. Bidirectional influence
between the VLM planner and the affordance module is
necessary for robust performance.

One line of work [20], [4], [3] uses a generalist model that
takes a goal image as input and outputs a sequence of low-
level velocity commands. This approach places an immense
burden on a single model to both learn high-level navigation
semantics and infer the specific low-level capabilities of the
robot directly from observations. This conflation of tasks
compromises performance on anything beyond simple, flat
terrain. Moreover, it introduces a practical limitation by
requiring a prior demonstration to obtain the goal image and
often relies on a pre-built map for long-range navigation,
limiting its applicability in unseen environments.

More recently, these hierarchical systems have been in-
stantiated as Vision-Language-Action models (VLAs), lever-
aging the semantic reasoning of pre-trained VLMs [21], [18],
[22]. The method most relevant to ours is NaVILA [21],
which finetunes a VLM to map a natural language command
to a sequence of textual low-level actions (e.g., "Move
forward 25 cm”). This approach has two key drawbacks.
First, specifying precise goals via text can be tedious and am-
biguous for non-object-centric navigation. Second, discrete,
short-horizon textual output commands are not well-suited
for long-range planning and, crucially, do not provide a nat-
ural interface for downstream modulation by an embodiment-
aware module.

We designed VAMOS to overcome these specific limita-
tions. By predicting a continuous 2D path as our interface,
we (1) enable precise, long-range spatial reasoning, (2) do
not require prior demonstrations or maps, and (3) create



a representation that can be explicitly modulated by our
per-embodiment affordance model. This lets our high-level
planner focus solely on generalizable navigation strategy,
while the affordance model assumes sole responsibility for
grounding the plan in the specific robot’s physical capabili-
ties.

III. VAMOS: VLA FOR HIERARCHICAL NAVIGATION,
AFFORDANCE-MODULATED AND STEERABLE

We propose a learning-based navigation algorithm, VA-
MOS, that can learn from large, heterogeneous datasets while
maintaining awareness of embodiment-specific capabilities.
To do this, we combine a high-level VLM planner with
embodiment-specific, low-level locomotion affordance mod-
els, which re-rank the high-level predictions to align with
robot capabilities at test time. In the following subsections,
we outline our high-level generalist model architecture and
training paradigm (Section III-A) and then describe the low-
level affordance modulation (Section III-C).

A. High-Level VLM Planners for Learning from Large-Scale
Datasets

A high-level generalist navigation model must be able to
incorporate a variety of large-scale data sources, benefiting
from their union. To this end, we build on recent advances
in vision-language modeling by parameterizing our high-
level generalist navigation model as a vision-language model
(VLM). Our key design decision then became: What choice
of interface between the high- and low-level models facili-
tates generic training across heterogeneous datasets while
effectively interfacing with embodiment-specific, low-level
control?

We cast high-level navigation as a trajectory prediction
problem, leveraging 2D point prediction as a unifying inter-
face for general-purpose navigation. Specifically, we train
a VLM planner Py(7|l,g;) to go from a monocular RGB
image [ € .# and target goal coordinates encoded in text g;
to predict a coarse 2D path 7 € .7 in pixel space. The 2D
path 7 is a sequence of points that describes a trajectory of
where the robot should move in future time-steps, projected
onto the image plane for simplicity. Formally, the 2D path
is defined as 7 : (x,y);, where (x,y) are normalized pixel
locations of the robot’s position in the frame at step ¢.

Our choice of parameterization has several advantages.
First, it facilitates general-purpose training from a variety
of data sources, with variable action spaces, unified via
point prediction. Second, as noted in prior work [18], [23],
training on point-level predictions helps VLMs retain much
of their pre-trained generalization capabilities. The high-
level VLM navigation module interfaces with a low-level
controller 7 bidirectionally (see Section III-C); it provides
waypoints for the low-level controller to track, while the low-
level controller modulates the high-level predictions via its
affordance function Fj.

To train our steerable VLM planner, we first assemble
a diverse navigation dataset mix that spans 29.8 hours
and contains odometry-labeled data from 4 different robotic

navigation datasets taken from 3 different embodiments. We
perform a series of data processing and filtering operations
(Section III-B) that let us obtain higher-quality data for
training our navigation generalist. From this dataset, we
easily extract labeled data in the form of tuples of images
and corresponding navigation paths, represented as 2D points
in pixel space. We additionally annotate and augment this
data with text descriptions from a state-of-the-art VLM to
improve model steerability.

Given this training data, we finetune high-level VLMs
to perform path predictions given input images and target
goal coordinates. We perform supervised finetuning over a
pre-trained PaliGemma 2 3B model at 224px? resolution
[24]. We use low-rank adapters (LoRAs) since training our
models using full-parameter fine-tuning vs LoRA [25] yields
similar performance.

B. Training Data and Preprocessing

a) High-Level Generalist Training Data: We obtain
training data for the high-level navigation module from
diverse robotic navigation datasets. Since different robots
may not share the same low-level action space, we align
predictions across these datasets using pixel-point prediction
as a unifying interface. For all data sources, we label trajec-
tories in hindsight using camera poses at a horizon H into the
future. Importantly, we use poses of the robot on the ground
for all training data; this lets us specify goals in image space
behind occluded points. We use known or estimated intrinsic
and extrinsic matrices to project the 3D poses recorded in
the datasets into 2D image trajectories.

We curate a diverse mix of datasets for navigation that
spans different robot embodiments, camera perspectives,
timing and weather conditions, and, significantly, different
navigation capabilities and affordances. We perform several
data pre-processing operations on our data that are crucial for
improving model performance to the point of deployability,
i.e., combining both short- and long-horizon trajectories,
filtering data based on curvature, and empirically determining
the right data mix.

b) Steerability Recipe: The textual interface of our
generalist VLM lets us provide preferences expressed as text-
based instructions to steer the model’s predictions at test
time. To train a steerable model, we augment 10% of the
data with state-of-the-art VLM annotations and co-train with
two text-only visual question datasets. First, we generate 4
temporally correlated noisy versions of the ground-truth 2D
trajectory 7 plus a mirrored version of 7. Then, we overlay all
paths onto the image I and use chain-of-thought prompting to
ask GPT-5-mini to (1) describe the obstacles and terrain in
the scene, (2) describe the paths, and (3) rank them based on
their quality and diversity. We take the top three 2D paths and
their respective descriptions, and we add them to our dataset.
Finally, we co-train with data from the COCO-QA [29] and
Localized Narratives [30] datasets to prevent forgetting.

C. Affordance Conditional Modulation

Formulation. The high-level VLM predictions are modu-
lated by a low-level, capability-aware affordance function,
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The VAMOS framework. The high-level planner is a VLM trained to take as input an image and a goal coordinate encoded as text, outputting a

proposal path in pixel space. This path is projected from 2D pixel space to the ground plane and modulated by a capability-aware affordance function that
determines which path to execute in the real world based on low-level policy capability. This hierarchical structure enables robust, open-world deployment

of cross-embodiment and steerable navigation policies.

SCAND TartanDrive CODA Spot

Fig. 4. Variety of training datasets used to train the generalist model;
these include SCAND [26], TartanDrive [27], CODa [28], and a small, in-
domain dataset called Spot.

which ensures that only achievable behavior is executed
on hardware. The high-level navigation policy generates a
set of candidate trajectories that the robot can follow to
reach the goal. To pick the trajectory candidate best suited
to the specific low-level locomotion policy running on the
robot, we predict an affordance score Fp : M X X XY X
A — [0,1] that jointly maps from the elevation map M :
{1,2,...,W} x{1,2,...,H} — R, normalized query point
x,y € [0,1] position in Euclidean space around the robot
and heading angle a € {0°,45°,...,315°} to the probability
that the policy & can actually traverse (x,y) in the map M
when heading in direction a. This setup is inspired by the
traversability estimation literature, both in simulation [13],
[14] and from real-world data [11], [12]. An affordance score
of 1 indicates that the point is fully traversable, while 0
indicates that the point is not traversable.

This affordance function Fy is learned via supervised
learning fully in simulation by rolling out the embodiment-
specific locomotion policy across a diversity of terrains. Fy

enables test-time modulation of predictions from the VLM
and is of benefit in two situations. First, it helps to find
the candidate trajectory predicted by the VLM that is best
aligned with the actual capabilities of the robot. Second,
it assists with filtering out potentially noisy or infeasible
predictions from the VLM, e.g., if it incorrectly predicts a
path through an obstacle.

Training. Training data for learning affordance function
F; is made available by executing trajectories in simulation
over a large variety of procedurally generated terrains using
the chosen low-level policy. To collect each data point, a
random elevation map M is spawned; following this, the
agent is reset to a particular position (x,y) in the simulator,
the policy is executed over a short horizon in a particular di-
rection a, and binary traversal success (or failure) of the low-
level policy is noted. This results in a set of data points Z =
{M) x) y) gl AN wwhere M) € RW*H s a local
elevation map, (x(),y(")) is the queried agent position, ') €
{0,45,...,315} is the heading direction, and s € {0,1}
is a label representing success or failure of the trajectory.
Given this training data &, we train an affordance function
Fr, represented as an MLP by minimizing a standard binary
cross loss £ — . = ming, By vy a5 [0 (Fz(M,x,y,a),s)].

D. Deployment

The navigation missions are defined given a series of
GPS waypoints or 3D coordinates in the world frame,
which are converted to 2D points in the image to be
passed as input to the high-level VLM. During deploy-
ment, the VLM is first queried on the current image [
and a text-encoded 2D goal coordinate g, to obtain a set
of viable paths pi,p>,...,pkx in pixel space. Each pixel-
space path p; is then projected into world positions of
the robot in the ground plane along each path: 7}V =

[(xo,yo)i,...,(xH,yH)i]fil to query affordances. The affor-



dance of each candidate path is then computed using this
sequence of points along with the local elevation map M
to query Fy, thereby obtaining a pointwise affordance score
for each path: [FE(M,xo,yo,ao)i,...,Fn(M,xH,yH,aH)"H(:l.
Finally, since a path is blocked if even one of its
elements is blocked, a cumulative affordance is com-
puted as the minimum affordance score along each path:
F¢(p!) =min [FH(M7x07y07a0)i7...,FH(M,xH,yH,aH)i] . In-
tuitively, paths 7;” with higher affordances are better, while
low-affordance paths are unlikely to be successfully nav-
igated using the low-level policy 7. Given this per-path
measure of cumulative affordance F¢(p!’), we can select a
single trajectory to execute on the robot greedily by choosing
the trajectory with the highest affordance, or we can sample
with soft sampling to allow for some stochasticity in path

selection: " ~ Softmax (F(gl”’)’ F(gﬁ“) L)

This modulation results in a sample path ©" that can
then be executed on the robotic hardware by commanding
waypoints to the low-level policy. During deployment, we as-
sume access to a low-level, velocity- or position-conditioned
locomotion controller for our real-world platforms. We use
the predictions of the high-level VLM in a receding horizon
control fashion, where it predicts k = 5 waypoints but uses
only the first m waypoints predicted by the high-level con-
troller before replanning, where m < k is a tunable parameter.
If the goal coordinate is not in the image frame, the robot
rotates in place until the goal is back in the image before
replanning.

IV. EXPERIMENT RESULTS

Out experiments evaluate the following research questions.
(1) Is our hierarchical navigation method competitive with
other navigation baselines in unseen environments? (2) Does
our navigation method support cross-embodiment naviga-
tion? (3) Is VAMOS steerable? (4) Do we benefit from
having a high-level generalist VLM compared to having a
robot-specific navigator? (5) Do we benefit from low-level
affordance modulation for single-robot navigation? We first
describe the setup of our experiments and then walk through
results pertaining to each question.

A. Experiment Setup

To validate the claims in this work, we test the methodol-
ogy on two robotic platforms:

1. Legged: Boston Dynamics Spot. We evaluate perfor-
mance on the BD Spot Robot using the built-in locomotion
controller (capable of traversing ramps, stairs, and other
terrains) as the low-level policy.

2. Wheeled: UW Hound Robot. To test transfer across
embodiments, we also consider a second robot, the UW
Hound [31]. Importantly, the Hound uses the same high-level
VLM planner, but we simply vary the low-level affordance
function and controller.

Simulation Environment. We build our simulation en-
vironment to learn the affordance function on Isaac Lab.
We use a perceptive RL policy trained with reinforcement
learning in simulation [32] as a proxy for the built-in

BD Spot policy. To learn perceptive affordance functions
that transfer well to real world, we must provide a wide
diversity of terrains in simulation; during real-world deploy-
ment, there are often more distractors in the environment,
such as furniture or vegetation, that must be modeled for
proper sim-to-real transfer. To add diversity to our simulation
environments, we generated inter-connected structures with
stairs and ramps using wave function collapse. Additionally,
to model irregular patterns, we used cellular automata to
generate smooth, uneven terrains.

B. Is VAMOS a capable navigation system in the real world?

We compare performance between our method and other
state-of-the-art baselines in terms of navigation capabilities
in real-world, unseen, indoor and outdoor environments. The
chosen baselines are (1) a geometric model-based modular
navigation stack similar to [7], (2) ViPlanner [15], a learned
geometric and semantic planner, (3) NoMaD [3], a naviga-
tion foundation model, and (4) NaVILA [21], a navigation
VLA. We focus on a short- to medium-horizon range for
goal navigation, where the goal position is specified in 3D
global coordinates. To reach long-range goals, we generate
waypoints to the goal every ~ 10 meters (Fig. 6).

The “Hallways” course (~ 20m) tests the ability to navi-
gate down narrow corridors with tight turns. The “Atrium”
course (~ 20m) measures the ability to navigate cluttered
open scenes in low light. The “Lab” (~ 5m) course tests the
ability to navigate to a point occluded by a large irregular
obstacle. The “Campus” (~ 40m) course tests the ability
to navigate long distances, including going up a 7-step
staircase. The “Forest” (~ 20m) course tests the ability to
navigate in vegetated environments that including stairs;
rooted and vegetation-covered terrain; irregular concrete
paths; and paths with overhanging vegetation. Finally, the
“Down Ramp” (~ 15m) course tests the ability to navigate
to a point below the start pose, evading foot-snaring vines.

We present the results in Table I. VAMOS achieves higher
average success rate across all courses, performing well
across all conditions, which no other baseline does.

In indoor environments, VAMOS performs on par with
the modular stack and ViPlanner, with the exception being
the more challenging “Lab” course, where it outperforms
all baselines. This is because the inferred geometric cost-
maps indoors are clean and easy to plan against. However,
two generalist baselines, NoMaD and NaVILA, struggle to
generalize out-of-distribution, even though they were both
trained using indoor data similar to our data mix, and
mainly navigate in straight lines or bounce off walls. We
credit VAMOS’s superior performance to our usage of 2D
trajectories, which have been shown to maintain more of the
pre-trained VLM’s generalization capabilities [18].

VAMOS also excels in outdoor urban and off-road en-
vironments. Neither the modular stack nor the generalist
baselines performs well in outdoor environments. The geo-
metric modular stack fails at the interface of perception and
planning, where inaccurate perception leads to downstream
failures. The generalist baselines fail because in more open
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Fig. 5. Experiment Setup. We run experiments indoors and outdoors in unseen scenes with challenging terrain, lighting, and vegetation.
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TABLE I
NAVIGATION PERFORMANCE METRICS FOR DIFFERENT METHODS AND ENVIRONMENTS. VAMOS OUTPERFORMS MODEL-BASED AND

END-TO-END GENERALIST LEARNED BASELINES ACROSS A WIDE VARIETY OF CONDITIONS.

Indoor Outdoor
Hallways Atrium Lab Campus Forest Down Ramp Avg. SR

Method SR NI T SR NI T SR NI T SR NI T SR NI T SR NI T |

Modular Stack 100 0 0 100 0 0 100 02 O 0 - 2 0 - 0 20 1 0 53
ViPlanner 100 O 0 100 0 0 0 - 0 100 0 0 100 0 0 0 - 0 67
NoMaD 60 13 1 0 - 340 2 0 0 0 5 0 - 2 60 07 0 27
NaVILA 20 - 1 0 - 1 40 - 0 0 - 0 0 - 1 0 - 5 10
vamos (Ours) 100 02 0 8 025 1 100 0 0 80 0O 0 100 04 0 8 025 O 90

SR: Success Rate over 5 trials (%) T, NI: Avg. number of interventions on successful runs [0-2] |, T: 3 min. timeouts [0-5] |

environments, they mainly walk in straight lines. ViPlanner
performs well due to its well-tuned geometric and semantic
perception integration. However, in both the “Lab” and
“Down Ramp” environments, which are challenging due to
large geometric obstacles that require long-term planning,
ViPlanner fails to reason about long-term outcomes. These
experiments highlight VAMOS’s rich geometric and semantic
reasoning capabilities, resulting in a significantly higher
overall average success rate (90%) compared to the base-
lines.

C. Does VAMOS support cross-embodiment navigation?

We evaluate the cross-embodiment capabilities of our
method on a simple test environment consisting of a staircase
and a ramp, side-by-side, leading to an elevated floor, as
shown in Figure 7. We use the same high-level planner
for both Spot and HOUND robots, and we swap only the
embodiment-specific affordance module. First, we show that
affordance modulation lets the same VLM predictor be used
effectively with two different robot embodiments, enabling
navigation for both platforms. As we show in Table II,
the same VLM with affordance modulation enables accurate
navigation for both legged and wheeled platforms, taking
specific robot capabilities into account. In this case, the
wheeled robot can only take the ramp, while the legged
robot can succeed on both stairs and ramps. In contrast,
executing VLM predictions without affordance modulation
often results in predictions that are not achievable under the
current low-level embodiment. !

I'To improve multimodal generation in this experiment, we collected 50
static images with slight pose variations from each robot in that environment,
labeled each with a path going up stairs and a path going up ramps, and then
generated 10 noisy samples per hand-drawn trajectory to generate the dataset
that we used to finetune the base VAMOSVLM planner. This helped more
clearly illustrate the differentiation provided by the affordance function.

TABLE IV
VAMOS OUTPERFORMS THE BEST BASELINE IN CROSS-EMBODIMENT
TASKS, SELECTING RAMPS VS. STAIRS VIA ITS AFFORDANCE MODEL

(N=10).
Method Spot HOUND
ViPlanner 100 0
VAMOS 100 90

Compared to the best performing method in Table I,
ViPlanner, we show that our method achieves almost perfect
success rates on both embodiments, while ViPlanner fails
when deployed on HOUND, as shown in Table IV. By
swapping affordance models that are cheap to train and run,
we obtain performant cross-embodiment navigation.

D. Is VAMOS steerable via natural language?

We evaluate the steerability of our model qualitatively and
quantitatively. In Figure 9, we show examples of the 2D
paths predicted by VAMOS with and without preferences
appended to the text input that encodes the goal coordinate.
As we see in Figure 9, we can easily adapt the output
trajectories to follow a particular direction (left or right) or
to take a particular terrain (stairs, ramps, or grass planters).
Using VLM-as-a-judge (ChatGPT 5) on Figure 9 b., we
obtain 20/20 preference alignment when specifying which
path to take for both the ramps and the stairs compared to
the original trajectories without pre-specified preferences.

E. Does the high-level VLM generalist provide benefits over
a robot-specific navigator?

To understand whether training a generalist VLM policy is
actually beneficial, we perform an analysis of offline model
performance. Specifically, we aim to answer whether pooling
data from the heterogeneous datasets in Figure 4 is beneficial



Fig. 6. Qualitative visualization of outdoor navigation results. The results show the paths VAMOS takes to reach the goal successfully, i.e., navigating
around obstacles and avoiding non-traversable regions, which baselines fail to do.

Fig. 7. Affordance function chooses ramp for wheeled robot. Fig. 8. Affordance function eliminates noisy VLM predictions.
No Modulation Modulation .
Condition Success Rate (%)
Robot Stairs Ramps Stairs Ramps
Spot 4/10 6/10 8/10 2/10 Without Affordance 20.0
Hound 4/10 6/10 1/10 9/10 With Affordance 60.0
TABLE II TABLE III

EMBODIMENT-SPECIFIC AFFORDANCE MODULATION. COUNTS OF PATH EFFECT ON OOD OBSTACLE AVOIDANCE. AFFORDANCE MODULATION

CHOICES (GREEN = SUCCESS, RED = FAILURE).

Y Take the stairs (b)

Head right (c..e. f)

Fig. 9. Qualitative results demonstrating steerability of navigation
behavior using VAMOS. Different preferences are indicated by the shown
natural language prompts and depicted using different colors.

compared to simply training the model on single, robot-
specific datasets. We compare the performance of the high-
level VLM predictor on path prediction across mean L2
prediction error as a metric. Specifically, we compare the
performance of a model trained on a pooled dataset across
all the datasets mentioned in Figure 4 to the performance
of a model trained on each individual dataset. The results

CUTS HIGH-LEVEL VLM PREDICTION ERRORS.

in Figure 10 indicate that pooling data results in better
performance than training on specific datasets.

Mean L2 Error Comparison

0.06{[=m I trained on all datasets

[0 Model trained on specific dataset

Mean L2 Error

SCAND

TartanDrive coDa Spot
341K 79K

Datasets

Fig. 10. Visualization of effect of pooling datasets (green) vs training
on individual robot datasets (yellow): pooling data across robots improves
model performance. Error bars represent 95% CL.

F. Do we benefit from low-level affordance modulation for
single-robot navigation?

Next, we evaluate whether modulation with the affordance
function can improve model performance with a single
embodiment by correcting for VLM errors. We show quan-
titatively in Table III that the VLM performance without



modulation can make mistakes in OOD settings, such as
going through obstacles, that are corrected by the affordance
function modulation. The same can be seen qualitatively in
Figure 8, where affordance modulation prevents the execu-
tion of catastrophic paths suggested by the VLM.

Finally, we visualize the affordance function in Figure 11.
We see that it naturally captures the geometry of the en-
vironment and the particular agent’s capabilities. Projecting
this affordance function onto the VLM predictions prevents
mistakes like navigating directly into obstacles.

Scene Geometr Spot Affordance

-—— = 5

N
-

4

Hound Affordance

Fig. 11.  Visualization of the affordance function for the Spot and
Hound robots. The affordance function indicates that the Spot robot
can ascend stairs, but the wheeled Hound cannot (yellow signifies high-
affordance score). However, both robots cannot traverse tall obstacles (e.g.
the wall has a low-affordance score).

V. CONCLUSION

We presented VAMOS, a technique for general-purpose
navigation using vision-language models. The central idea
in this work is to combine diverse, heterogeneous datasets
for training a hierarchical VLA model. The high-level VLM
planner predicts candidate navigation paths as 2D pixel paths.
This output is modulated by a low-level affordance model
that enables capability- and embodiment-aware navigation
on deployment. We show significantly improved perfor-
mance over both model- and learning-based baselines in our
extensive real-world navigation experiments. The resulting
methodology provides a step towards open-world, general-
purpose navigation agents that can reason both geometrically
and semantically about how to act in the world.
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